Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Chemical science ; 12(4):1513-1527, 2020.
Article in English | EuropePMC | ID: covidwho-1766761

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41–Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored Nδ (HD) and Nϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts. The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics.

2.
J Phys Chem Lett ; 12(17): 4195-4202, 2021 May 06.
Article in English | MEDLINE | ID: covidwho-1387119

ABSTRACT

The catalytic reaction in SARS-CoV-2 main protease is activated by a proton transfer (PT) from Cys145 to His41. The same PT is likely also required for the covalent binding of some inhibitors. Here we use a multiscale computational approach to investigate the PT thermodynamics in the apo enzyme and in complex with two potent inhibitors, N3 and the α-ketoamide 13b. We show that with the inhibitors the free energy cost to reach the charge-separated state of the active-site dyad is lower, with N3 inducing the most significant reduction. We also show that a few key sites (including specific water molecules) significantly enhance or reduce the thermodynamic feasibility of the PT reaction, with selective desolvation of the active site playing a crucial role. The approach presented is a cost-effective procedure to identify the enzyme regions that control the activation of the catalytic reaction and is thus also useful to guide the design of inhibitors.


Subject(s)
Drug Design , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Biocatalysis , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protons , Quantum Theory , SARS-CoV-2/isolation & purification , Thermodynamics , Viral Matrix Proteins/metabolism
3.
Chem Sci ; 12(4): 1513-1527, 2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1083334

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

SELECTION OF CITATIONS
SEARCH DETAIL